Emerging technology observations

IM Review Forum - 29 July 2015

Glenn Coates - Strategic Planning Manager

Context

- Emerging technologies including PV, EVs and battery storage are reasonably well understood
- Ignoring the price of emerging technologies we can develop distribution <u>network</u> impact scenarios – the impacts are not uncertain
- We outline our early impact scenario observations in this presentation
- We acknowledge that different network and customer demographics may lead to different conclusions
- Some uncertainty exists around how the scenarios will be implemented and by who – this uncertainty creates business risks
- The real uncertainty is not around existing emerging technologies but new or significantly evolving technologies – are there 'game-changers' to come and to what extent do we need to respond to these now?

Some extreme scenarios to test the potential impacts of PV, EVs and storage on the distribution network

Load, PV and EV profiles

- PV 6kW per ICP (really extreme with 50% of energy supplied by PV)
- EV one per ICP, 30km per day (NZ average 40km)

4

EV charging 60% overnight, 20% pm peak, 10% am peak and 10% day

Combined impact of EV, PV and battery storage on a sunny summer day

- Storage required equivalent to 45% of ICPs with a Tesla 5kW/7kWh battery
- 8% losses in battery promotes use of hot water storage first
- Summer network demand drops from 360MW to 20MW

Combined impact of EV, PV and battery storage on a cold winter day

- 15% of ICPs with a Tesla 5kW/7kWh battery to achieve above reduction
- Can expect 3-5 days of this so inter-day energy transfers difficult
- Energy efficiency could drop peak another 10-20%

Impact on subtransmission investment

Urban context – rural similar but additional drivers (e.g. irrigation)

- Existing network well utilised so modest downsizing is not material enough in an underlying population growth environment
- New subtransmission capacity still required in areas of urban sprawl – typical increments of 20-40MW at a time
- A cautious approach to the expansion of our high voltage network is required – similar to current practice

What about the low voltage network? Around 40% of network value

Low voltage network impact of EV, PV and battery storage on a cold winter day

- 25% of ICPs with a Tesla 5kW/7kWh battery to achieve above reduction
- Can expect 3-5 days of this so inter-day energy transfers difficult
- Energy efficiency could drop peak another 10-20%

Potential LV network impacts (without storage or EV charging management)

EV impact on LV

Percentage of households using a 3kW charger at peak

Further investment likely – not stranding

Low voltage network investment

Considerations

- Largely a set and forget regime choices made at the time of subdivision development
- After diversity maximum demand typically 3-3.5kVA per household
- Existing low voltage network design based on 5kVA per household but infill has eroded capacity margin in many areas
- As per current practise, choices about future proofing apply old practises of providing a small capacity margin facilitate PV and EVs now – an enable or a responder?

Emerging technology impacts

- Whether new technologies achieve efficiency gains or drive reinforcement is largely dependent on successful management of DG and DSM
- Older overhead areas more vulnerable to poor management
- Low voltage network a vital part of micro grids if they should eventuate – unlikely to be stranded?

Observations

- PV provides little benefit to the network in the winter
- EV impact largely dependent on time of charge
- Battery storage could more than mitigate the effect of EV charging at peak but introduces significant losses – 8% plus
- Need to acknowledge further hot water heating efficiencies or fuel switching – 20% household electricity drop possible
- Population growth significantly offsets the effects of emerging technologies on the size of the subtransmission network
- Our LV network needs to remain relevant to customers enhanced flexibility around how the network is used – added complexity

What are the risks & opportunities?

- Opportunity to support transport sector CO2 emissions without a corresponding increase in the electricity sector
- Risk that emerging technologies will lead to increased network investment
- Conversely an opportunity to increase the utilisation of the existing network through coordinated management of load, distributed generation and storage – DSM markets and regulation important
- Opportunity for customers to share the role of capacity, security and reliability of supply

IMs and broader regulation must

- ensure that long term network owner risks (real or not) do not result in short term customer service risks - network opex or capex avoidance
- acknowledge the role (or possible role) of distribution networks in facilitating efficient outcomes for emerging technologies – capability and coordination
- Facilitate 'horses for courses' customer demographics and network geographies may require different solutions
- Recognise that the 'long term interests of consumers' may not be as clear as the past – short term flexibility/optionality in design has value
- Ensure that distribution networks are not disadvantaged when alternatives are available – e.g. expectation of service and pricing restrictions

oriongroup.co.nz | thank you

Off grid feasibility – Blue Skin Bay (261 ICPs)

(I.G.Mason – EEA Conference proceedings)

Optimising Energy Returned on Energy Invested

- EROEI for PV is 5-9 and wind about 15-80
- EROEI for PV is 5 and wind about 35

Option	Generation capacity as a % of annual requirement	Battery storage requirement (% of annual energy)	Battery storage requirement for annual ICP energy of 4100kWh	Energy return on energy invested (battery life 20 years)
PV with storage	200%	25.2%	1033kWh	less than 0.45
Wind with storage	500%	6.4%	262kWh	1.7

Battery storage makes community scale grid defection unattractive from an Energetics perspective